

Universal 2nd Factor

2015-02-01
FOSDEM Security devroom
Simon Josefsson
simon@yubico.com

mailto:simon@yubico.com

What is U2F?

The U2F solution
One device, many services

Easy: Insert and touch button

Safe: Unphishable Security

Pre-History of U2F: Gnubby

Yubico designed a precursor to U2F with
Google and NXP. Deployed to Google staff
around the world.
To reach mass market, standardization and
multiple vendors are needed. During 2012 the
FIDO Alliance started working on U2F.

Over 150 members

What is this U2F protocol?

Core idea: Standard public key cryptography
• User's device mints new key pair, ”registers” public key and key-handle with server
• Key handle contain data to restore private key on device
• Server provides key-handle and asks user's device to sign data to verify the user
• One device, many services - “Bring Your Own Authenticator”

Design considerations
• Privacy: Site-specific keys, no unique device ID
• Security: No phishing or man-in-the-middle, no soft private keys
• Trust: User decides what authenticator to use
• Pragmatics: Affordable today
• Usability: No delays, fast crypto on device, no driver installs

Driverless smartcard for the modern

consumer web, plus privacy

Think:

NFC

USB today, the world tomorrow

Hardware separation important! Software in
complex hosts too fragile → keys stolen on
0day vuln.

Relying partyUser Side

U2F code
USB (HID) API

U2F JS API
Secure U2F

Element

Transport
USB (HID)

Web Application

U2F library

Public Key +
KeyHandle

User Action

Browser
FIDO Client

U2F device

U2F entities

Demo

U2F Device
Browser -

FIDO Client
Relying
Party

handle, app id, challenge

h, a; challenge, origin, channel id, etc.

c

a
check
app id

retrieve:

key kpriv

from
handle h;
counter++

counter, signature(a,c,counter)

counter, c, s
check:
signature
using

key kpub

s

h

retrieve:

key kpub

from
handle h

set cookie

Authentication

U2F Authentication JSON blobs
Server sends: { "keyHandle": "yQ_cxLOEDDrQ1rGesE249-

QYNjGoNWpY2QRSQzE9p0qQZNk2i3Z6ioYAAumOZnJQhuQDJ2VVtOcUD85kYRdjuQ",

"version": "U2F_V2", "challenge": "cDftdgcY3SOYMaKPq6JFt0nmpFACTZuJ5EbRr-VTnxA",

"appId": "http:\/\/example.org" }

Client responds: { "signatureData":

"AQAAADMwRgIhAKCAGKKDcZe1Rt4HdOnD2JkF5yU711AxjngH_-dW9-

e5AiEAylw5kzYKRg2rSl0JU1zsJibF3MIWtOCXGv1h4KazCys=", "clientData":

"eyAiY2hhbGxlbmdlIjogImNEZnRkZ2NZM1NPWU1hS1BxNkpGdDBubXBGQUNUWnVKNUViUnI

tVlRueEEiLCAib3JpZ2luIjogImh0dHA6XC9cL2V4YW1wbGUub3JnIiwgInR5cCI6ICJuYXZpZ2F0b

3IuaWQuZ2V0QXNzZXJ0aW9uIiB9", "keyHandle": "yQ_cxLOEDDrQ1rGesE249-

QYNjGoNWpY2QRSQzE9p0qQZNk2i3Z6ioYAAumOZnJQhuQDJ2VVtOcUD85kYRdjuQ" }

USB HID Authenticate

U2F Device
Browser -

FIDO Client
Relying
Party

app id, challenge

a; challenge, origin, channel id, etc.

c

a
check
app id

generate:

key kpub

key kpriv

handle h kpub, h, attestation cert, signature(a,c,kpub,h)

c, kpub, h, attestation cert, s

store:

key kpub

handle h
for user

s

cookie

Registration

U2F Register JSON blobs
Server sends: { "challenge": "oVXT29EiA16cFFIQCzwPp-waGiMahI2WIevJXcFQCVc",

"version": "U2F_V2", "appId": "http:\/\/example.org" }

Client responds: { "registrationData": "BQQ91soQ8zQlX-

yBzGJtOWMvKbWPkIsOqA_1psdwK7fid03vAXcDreXFFgcYEaxI5dUyWcs3jiw67Z_D0KxZMTP2

QMkP3MSzhAw60NaxnrBNuPfkGDYxqDVqWNkEUkMxPadKkGTZNot2eoqGAALpjmZyUIbkAydl

VbTnFA_OZGEXY7kwg...W_AMRED0ExAGowC0YQMvgbqWGZiZAiBUt00SBB1TTtFfbwr4Lp1da

S5L6gqMQxtiHIrHjZwFKw==", "clientData":

"eyAiY2hhbGxlbmdlIjogIm9WWFQyOUVpQTE2Y0ZGSVFDendQcC13YUdpTWFoSTJXSWV2Slhj

RlFDVmMiLCAib3JpZ2luIjogImh0dHA6XC9cL2V4YW1wbGUub3JnIiwgInR5cCI6ICJuYXZpZ2F0

b3IuaWQuZmluaXNoRW5yb2xsbWVudCIgfQ==" }

Registration: USB HID

Application and Facet ID'sApplication

A set of functionality provided by a common entity (the application owner), and perceived by the user as belonging together. For
example, PayPal is an application that allows users to pay for stuff.

Facets

An (application) facet is how an application is implemented on various platforms. For example, the application PayPal may have an
Android app, an iOS app, and a Web app. These are all facets of the PayPal application.

Facet ID

A platform-specific identifier (URI) for an application facet. Simplest case: facet id and application id is the same.

● For the Web, the Facet ID is the web origin, written as a URI without a path (e.g.https://login.paypal.com).

● For Android, the Facet ID is the URI android:apk-key-hash:<hash-of-apk-signing-cert>.

● For iOS, the Facet ID is the URI ios:bundle-id:<ios-bundle-id-of-app>.

http://en.wikipedia.org/wiki/Same-origin_policy
https://login.paypal.com/

• Server/Browser: Call Javascript APIs
o Send key handle in HTML/JavaScript to browser

• Server: Implement registration flow
o Decide how to handle attestation certificates
o Verify registration response
o Store public key, key handle with user account

• Server: Implement login flow
o Check username/password, look up key handle
o Verify authentication response (origin, signature, counter, …)

• Relying Party: Check your account recovery flow

What if I want to support U2F?

So many keys...

● Authentication public/private key
o Unique for every RP
o Generated during U2F Registration
o Public key sent to RP during Registration
o Key handle can be used to derive private key

 Unlimited number of RPs on small device
o Hard coded to ECDSA using NIST P.256 curve

So many keys...

● Device-unique symmetric secret
o Unwrap/derive per-RP ECDSA key from key handle
o Unique random key for every device
o Yubico derives private key using HMAC-SHA256

Yubico’s U2F KeyHandle

● Key handle is nonce+MAC
instead of encrypted

● Device can derive ECDSA
private key from nonce and
symmetric device secret

● MAC detects
invalid
key handle or
malicious RP

So many keys...

● ECDSA attestation key (unique per batch)
o Linked with device attestation certificate
o Signs U2F Registration blobs

U2F attestation
● Proves what U2F device the user used
● X.509 Certificate with batch-unique key
● Why batch-unique and not device-unique?

o Privacy: device-unique key permits conspiring RPs
to link a physical key to particular user

o Common batch size could be 10k-100k (could be 1 -
breaking the privacy aspects)

Yubico U2F software

Our idea is to publish host and server libraries
in common languages as FOSS code
● C: libu2f-host & libu2f-server

● Java: java-u2flib-server

● PHP: php-u2flib-server

● Python: python-u2flib-host & python-u2flib-server

U2F C Libraries

● github.com/Yubico/libu2f-{server,host}
● Portable C99 few dependencies (json,

OpenSSL, HIDAPI)
● server: Generate U2F challenges and verify

responses
● host: Parse challenges and talk USB to get

responses
● Command line tool

developers.yubico.com/U2F

fidoalliance.org/specifications

demo.yubico.com/u2f

Libraries, Plugins, Sample Code, Documentation

U2F Protocol Specification

Yubico U2F Demo Server - Test your U2F device here!

Resources

http://developers.yubico.com/U2F
https://fidoalliance.org/specifications
https://demo.yubico.com/u2f

Thank you!

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	The U2F solution
	Pre-History of U2F: Gnubby
	Sida 9
	What is this U2F protocol?
	Sida 11
	USB today, the world tomorrow
	U2F entities
	Demo
	Sida 16
	USB HID Authenticate
	Sida 19
	Registration: USB HID
	App ID
	What if I want to support U2F?
	So many keys...
	So many keys...
	Yubico’s U2F KeyHandle
	So many keys...
	U2F attestation
	Yubico U2F software
	U2F C Libraries
	Resources
	Sida 31
	Sida 32

